Last week, I shared some lessons learned from a Domino Data Science Pop-up that I attended a…
Data / AI / ML, Entrepreneurship
Nearly four years ago, I joined the Insight Data Science team and we launched an intensive 7 week post-doctoral training fellowship bridging the gap between academia and data science. Since then, over 400 Insight alumni have been hired as data scientists or data engineers at top tier companies like Facebook, LinkedIn, Twitter, Airbnb, and Google. Although I formally […]
Last week, I shared some lessons learned from a Domino Data Science Pop-up that I attended a…
Three weeks ago, I had the pleasure of attending the Domino Data Science Pop-up, which was…
Nearly four years ago, I joined the Insight Data Science team and we launched an intensive 7 week post-doctoral training fellowship bridging the gap between academia and data science. Since then, over 400 Insight alumni have been hired as data scientists or data engineers at top tier companies like Facebook, LinkedIn, Twitter, Airbnb, and Google.
Although I formally left the company in March 2013 (but continue to have an advisory role there), I still field countless questions from entrepreneurs who are looking to hire a data scientist. Because, let’s face it: data scientists aren’t necessarily easy to find. When we launched Insight, the term “data science” was still new. Most founders don’t know where to begin the search, who to look for – not to mention how to bring a data scientist on board so he or she can make valuable contributions to the company.
To that end, I’ve decided to summarize some of what I learned at Insight about recruiting and training data scientists. Keep in mind, I won’t share all of Insight’s secret sauce, but will hopefully provide enough high level lessons and principles that you can apply to your own hiring process.
Finding a data scientist is hard. Let’s look in a different haystack!
When looking for a data scientist, the default approach for many companies is to go after software engineers with a strong interest in statistics, data mining and machine learning. Understandably, there’s a preference for people with strong programming skills. However, drawing math-loving engineers from the tech talent pool isn’t a sustainable strategy. This simply reallocates scarce resources.
So, what’s the alternative? Many PhDs in engineering and the sciences work with “big data” and code their own algorithms. Did you know that particle physicists analyze 5TB of data every day? Or that mechanical engineers design and code models for computational fluid dynamics? It’s a huge opportunity: PhDs can be the new untapped supply for data scientists!
The advantages of hiring PhDs are that you don’t have to teach them the fundamentals of math and they have a working knowledge of how to code that make them a functional data scientist. In addition, you earn their loyalty for taking a chance on them straight out of school and the cost of hiring is lower.
Can everyone make the leap from academia to industry?
Academia and business are two different worlds and there are several kinks to work out when transitioning a grad student their academic environment to industry. Here are three pointers learned from my experience with Insight.
Three ways to hire a data scientist
If you want to hire a data scientist, there are three approaches to take:
Version One
As the saying goes, it’s hard to find a needle in a haystack. That’s exactly how it felt as Boris and I spent the past few years looking to grow our team. But just as we began to slow down our efforts, the perfect person appeared. It’s funny how, in both life and venture capital, […]
Most people know me as an early-stage investor in now over 30 internet companies through…
Debt funding is an interesting option for start-ups in two scenarios: you can increase your…